Geometrically exact solution of a buckling column with asymmetric boundary conditions
نویسندگان
چکیده
منابع مشابه
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions.
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D-1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to con...
متن کاملBuckling and Post-buckling Analysis of FG-CNTRC Beams: An Exact Closed Form Solution
The present work derives the exact analytical solutions for buckling and post-buckling analysis of nano-composite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on the Euler-Bernoulli beam theory and principle of virtual work. The reinforcements are considered to be aligned in the polymeric matrix either unifor...
متن کاملA Collocation Method with Exact Imposition of Mixed Boundary Conditions
In this paper, we propose a natural collocation method with exact imposition of mixed boundary conditions based on a generalized Gauss-Lobatto-Legendre-Birhoff quadrature rule that builds in the underlying boundary data. We provide a direct construction of the quadrature rule, and show that the collocation method can be implemented as efficiently as the usual collocation scheme for PDEs with Di...
متن کاملExact Solution of the Ising Model on the Square Lattice with Free Boundary Conditions
The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of ar...
متن کاملExact Solution of the Six-vertex Model with Domain Wall Boundary Conditions. Ferroelectric Phase
This is a continuation of the paper [4] of Bleher and Fokin, in which the large n asymptotics is obtained for the partition function Zn of the six-vertex model with domain wall boundary conditions in the disordered phase. In the present paper we obtain the large n asymptotics of Zn in the ferroelectric phase. We prove that for any ε > 0, as n → ∞, Zn = CG nFn 2 [1+O(e−n 1−ε )], and we find the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2012
ISSN: 1617-7061
DOI: 10.1002/pamm.201210092